Surface Hopping Excited-State Dynamics Study of the Photoisomerization of a Light-Driven Fluorene Molecular Rotary Motor.
نویسندگان
چکیده
We report a theoretical study of the photoisomerization step in the operating cycle of a prototypical fluorene-based molecular rotary motor (1). The potential energy surfaces of the ground electronic state (S0) and the first singlet excited state (S1) are explored by semiempirical quantum-chemical calculations using the orthogonalization-corrected OM2 Hamiltonian in combination with a multireference configuration interaction (MRCI) treatment. The OM2/MRCI results for the S0 and S1 minima of the relevant 1-P and 1-M isomers and for the corresponding S0 transition state are in good agreement with higher-level calculations, both with regard to geometries and energetics. The S1 surface is characterized at the OM2/MRCI level by locating two S0-S1 minimum-energy conical intersections and nearby points on the intersection seam and by computing energy profiles for pathways toward these MECIs. Semiclassical Tully-type trajectory surface hopping (TSH) simulations with on-the-fly OM2/MRCI calculations are carried out to study the excited-state dynamics after photoexcitation to the S1 state. Fast relaxation to the ground state is observed through the conical intersection regions, predominantly through the lowest-energy one with a strongly twisted central C═C double bond and pyramidalized central carbon atom. The excited-state lifetimes for the direct and inverse photoisomerization reactions (1.40 and 1.79 ps) and the photostationary state ratio (2.7:1) from the TSH-OM2 simulations are in good agreement with the available experimental data (ca. 1.7 ps and 3:1). Excited-state lifetimes, photostationary state ratio, and dynamical details of the TSH-OM2 simulations also agree with classical molecular dynamics simulations using a reparametrized optimized potentials for liquid simulations (OPLS) all-atom force field with ad-hoc surface hops at predefined conical intersection points. The latter approach allows for a more extensive statistical sampling.
منابع مشابه
Understanding the dynamics behind the photoisomerization of a light-driven fluorene molecular rotary motor.
Light-driven molecular rotary motors derived from chiral overcrowded alkenes represent a broad class of compounds for which photochemical rearrangements lead to large scale motion of one part of the molecule with respect to another. It is this motion/change in molecular shape that is employed in many of their applications. A key group in this class are the molecular rotary motors that undergo u...
متن کاملLight-driven rotary molecular motors without point chirality: a minimal design.
A fundamental requirement for achieving photoinduced unidirectional rotary motion about an olefinic bond in a molecular motor is that the potential energy surface of the excited state is asymmetric with respect to clockwise and counterclockwise rotations. In most available light-driven rotary molecular motors, such asymmetry is guaranteed by the presence of a stereocenter. Here, we present non-...
متن کاملUltrafast dynamics in the power stroke of a molecular rotary motor.
Light-driven molecular motors convert light into mechanical energy through excited-state reactions. Unidirectional rotary molecular motors based on chiral overcrowded alkenes operate through consecutive photochemical and thermal steps. The thermal (helix inverting) step has been optimized successfully through variations in molecular structure, but much less is known about the photochemical step...
متن کاملUnravelling the electronic structure and dynamics of an isolated molecular rotary motor in the gas-phase† †Electronic supplementary information (ESI) available: Details of molecular motor synthesis and NMR data; geometrical data of optimised structures used in computational chemistry calculations; natural orbitals of the active space used in state-averaged CASSCF calculations. See DOI: 10.1039/c7sc01997a Click here for additional data file.
Light-driven molecular motors derived from chiral overcrowded alkenes are an important class of compounds in which sequential photochemical and thermal rearrangements result in unidirectional rotation of one part of the molecule with respect to another. Here, we employ anion photoelectron spectroscopy to probe the electronic structure and dynamics of a unidirectional molecular rotary motor anio...
متن کاملUnravelling the electronic structure and dynamics of an isolated molecular rotary motor in the gas-phase.
Light-driven molecular motors derived from chiral overcrowded alkenes are an important class of compounds in which sequential photochemical and thermal rearrangements result in unidirectional rotation of one part of the molecule with respect to another. Here, we employ anion photoelectron spectroscopy to probe the electronic structure and dynamics of a unidirectional molecular rotary motor anio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of chemical theory and computation
دوره 7 7 شماره
صفحات -
تاریخ انتشار 2011